pylops_distributed.MatrixMult

class pylops_distributed.MatrixMult(A, dims=None, compute=(False, False), todask=(False, False), dtype='float64')[source]

Matrix multiplication.

Simple wrapper to dask.array.dot for an input matrix \(\mathbf{A}\).

Parameters:
A : dask.array.ndarray

Matrix.

dims : tuple, optional

Number of samples for each other dimension of model (model/data will be reshaped and A applied multiple times to each column of the model/data).

compute : tuple, optional

Compute the outcome of forward and adjoint or simply define the graph and return a dask.array

todask : tuple, optional

Apply dask.array.from_array to model and data before applying forward and adjoint respectively

dtype : str, optional

Type of elements in input array.

Notes

Refer to pylops.basicoperators.MatrixMult for implementation details.

Attributes:
shape : tuple

Operator shape

explicit : bool

Operator contains a matrix that can be solved explicitly (True) or not (False)

Methods

__init__(A[, dims, compute, todask, dtype]) Initialize this LinearOperator.
adjoint() Hermitian adjoint.
apply_columns(cols) Apply subset of columns of operator
cond([uselobpcg]) Condition number of linear operator.
conj() Complex conjugate operator
div(y[, niter]) Solve the linear problem \(\mathbf{y}=\mathbf{A}\mathbf{x}\).
dot(x) Matrix-vector multiplication.
eigs([neigs, symmetric, niter, uselobpcg]) Most significant eigenvalues of linear operator.
inv() Return the inverse of \(\mathbf{A}\).
matmat(X) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatmat(X) Adjoint matrix-matrix multiplication.
rmatvec(x) Adjoint Matrix-vector multiplication.
todense() Return dense matrix.
tosparse() Return sparse matrix.
transpose() Transpose this linear operator.
inv()[source]

Return the inverse of \(\mathbf{A}\).

Returns:
Ainv : numpy.ndarray

Inverse matrix.