pylops_distributed.Identity

class pylops_distributed.Identity(N, M=None, inplace=True, compute=(False, False), todask=(False, False), dtype='float64')[source]

Identity operator.

Simply move model to data in forward model and viceversa in adjoint mode if \(M = N\). If \(M > N\) removes last \(M - N\) elements from model in forward and pads with \(0\) in adjoint. If \(N > M\) removes last \(N - M\) elements from data in adjoint and pads with \(0\) in forward.

Parameters:
N : int

Number of samples in data (and model, if M is not provided).

M : int, optional

Number of samples in model.

inplace : bool, optional

Work inplace (True) or make a new copy (False). By default, data is a reference to the model (in forward) and model is a reference to the data (in adjoint).

compute : tuple, optional

Compute the outcome of forward and adjoint or simply define the graph and return a dask.array

todask : tuple, optional

Apply dask.array.from_array to model and data before applying forward and adjoint respectively

dtype : str, optional

Type of elements in input array.

Raises:
ValueError

If M is different from N

Notes

Refer to pylops.basicoperators.Identity for implementation details.

Attributes:
shape : tuple

Operator shape

explicit : bool

Operator contains a matrix that can be solved explicitly (True) or not (False)

Methods

__init__(N[, M, inplace, compute, todask, dtype]) Initialize this LinearOperator.
adjoint() Hermitian adjoint.
apply_columns(cols) Apply subset of columns of operator
cond([uselobpcg]) Condition number of linear operator.
conj() Complex conjugate operator
div(y[, niter]) Solve the linear problem \(\mathbf{y}=\mathbf{A}\mathbf{x}\).
dot(x) Matrix-vector multiplication.
eigs([neigs, symmetric, niter, uselobpcg]) Most significant eigenvalues of linear operator.
matmat(X) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatmat(X) Adjoint matrix-matrix multiplication.
rmatvec(x) Adjoint Matrix-vector multiplication.
todense() Return dense matrix.
tosparse() Return sparse matrix.
transpose() Transpose this linear operator.